
- 【】対頂角・平行線と角
- 【】対頂角

[問題 1](2 学期中間)(\*)

右の図で $\angle a$  と $\angle c$  の位置にある角を( )という。

#### [解答欄]





#### [問題 2](後期中間)(\*)

次の文章中の①に適語,②に数字を入れよ。

右の図で $\angle a \, \angle \, \angle c$ ,  $\angle b \, \angle \, c$  はともに(①)上にある角だから,

 $\angle a = (2)^{\circ} - \angle c$ 

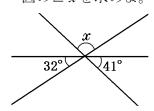
 $\angle b = (2)^\circ - \angle c \ge なり$ 

 $\angle a = \angle b$  が成り立つ。つまり、対頂角は等しい。

#### [解答欄]

| ① ② |
|-----|
|-----|

#### [問題 3](2 学期期末)(\*\*)

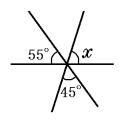

右の図で、 $\angle a = \angle c$  であることを説明せよ。

#### [解答欄]

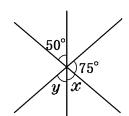
|  |              | _ |
|--|--------------|---|
|  | $\mathbf{a}$ | > |
|  |              |   |
|  |              | ( |
|  |              |   |
|  |              |   |

#### [問題 4](3 学期)(\*)

図の $\angle x$ を求めよ。




#### [解答欄]


# [問題 5](2 学期期末)(\*)

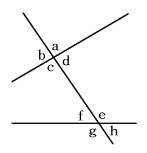
次の図の $\angle x$ ,  $\angle y$ の大きさを求めよ。

(1)



(2)




| (1) x = | (2) x = | y = |
|---------|---------|-----|
|---------|---------|-----|

#### 【】同位角と錯角

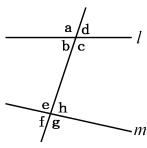
#### [問題 6](2 学期中間)(\*)

次の()にあてはまる語句を入れよ。

- (1) 右の図で、 $\angle a$  と $\angle c$  のような位置にある 2 つの角を( )と いう。
- (2) 右の図で、 $\angle a$  と $\angle e$  のような位置にある 2 つの角を( ) という。
- (3) 右の図で、 $\angle d$  と $\angle f$  のような位置にある 2 つの角を( )と いう。



#### [解答欄]


| (1) | (2) | (3) |
|-----|-----|-----|
|     |     |     |

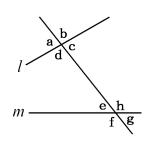
#### [問題 7](2 学期期末)(\*)

右図の∠bについて次の角をそれぞれ答えよ。

ア 対頂角 イ 同位角

ウ 錯角



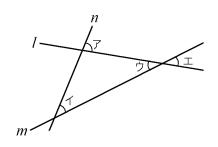

#### [解答欄]

| 7 | 7 | 1 | ウ |
|---|---|---|---|
|   |   |   |   |

#### [問題 8](2 学期期末)(\*)

右の図のように、2 直線l、m に 1 つの直線が交わってできる角 のうち, 次の角を答えよ。

- (1) ∠a の対頂角
- (2) ∠cの同位角
- (3) ∠h の錯角




| (1) | (2) | (3) |
|-----|-----|-----|
|     |     |     |

# [問題 9](後期中間)(\*)

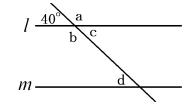
右の図の2つの直線l, mにlつの直線nが交わりてできる角のうち、次の位置にある角は何というか。

- ① アとイ
- ② ウとエ



| ① | 2 |
|---|---|
|---|---|

#### 【】平行線と同位角・錯角


#### [問題 10](2 学期期末)(\*)

次の()にあてはまることばを書け。

右の図で、 $\angle a \ \angle b \ t$ (① )角なので等しい。

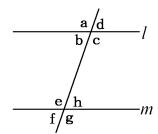
l // m であるとき, (②)角は等しいから $\angle d = 40^\circ$ 

 $l \parallel m$  であるとき, (③) 角は等しいから $\angle c = \angle d$ 



#### [解答欄]

| 1 | 2 | 3 |
|---|---|---|
|   |   |   |

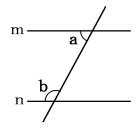

#### [問題 11](2 学期期末)(\*)

1 // mのとき,次の各問いに答えよ。

- (1) ∠b と等しい大きさの角を3つあげよ。
- (2) ∠a=110°のとき, ∠hの大きさを求めよ。

#### [解答欄]

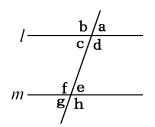
| (1) |  | (2) |
|-----|--|-----|
|-----|--|-----|




### [問題 12](2 学期期末)(\*\*)

右図を利用して、m // n ならば、 $\angle a + \angle b = 180$ °である ことを平行線の性質を利用して説明せよ。

#### [解答欄]






### [問題 13](2 学期期末)(\*)

 $\angle a$  と $\angle e$  の大きさが等しいときの 2 直線 l, m の位置関係を 記号で表せ。

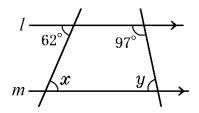




| [問題 | 14](後期中間)(**) |
|-----|---------------|
|-----|---------------|

右の図で、l//m, m//nならば、l//nであることを説明せよ。

| 1  | /  |  |
|----|----|--|
|    | a/ |  |
| m- | b  |  |
| n  |    |  |
|    | c/ |  |


| [解答欄] |  |  |  |
|-------|--|--|--|
|       |  |  |  |

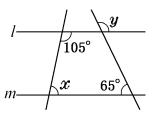
#### 【】平行線の角の計算

#### [基本問題]

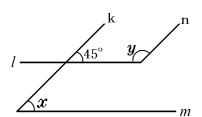
#### [問題 15](2 学期中間)(\*)

次の $\angle x$ ,  $\angle y$ の大きさを求めよ。ただし、l // mとする。




# [解答欄]

| x = | y = |
|-----|-----|
|-----|-----|


#### [問題 16](2 学期期末)(\*)

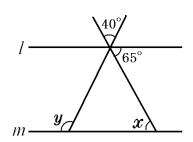
次の $\angle x$ ,  $\angle y$ の大きさを求めよ。ただし、l / / m, k / / nとする。

1

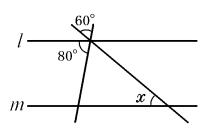


(2)




#### [解答欄]

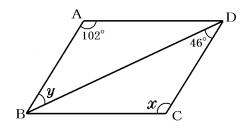
|     | y = | 2x = |
|-----|-----|------|
| y = |     |      |


# [問題 17](2 学期期末)(\*)

次の $\angle x$ ,  $\angle y$ の大きさを求めよ。ただし、l // mとする。

(1)



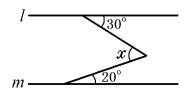

2



|  | y = | $\bigcirc x =$ |
|--|-----|----------------|
|--|-----|----------------|

#### [問題 18](3 学期)(\*)

次の $\angle x$ ,  $\angle y$ の大きさを求めよ。ただし、四角形 ABCD は平行四辺形とする。




### [解答欄]

#### [平行な補助線をひく]

#### [問題 19](3 学期)(\*\*)

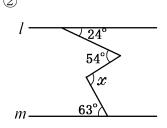
次の $\angle x$ の大きさを求めよ。ただし、l // mとする。

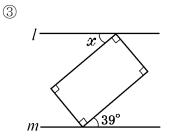


#### [解答欄]



#### [問題 20](2 学期期末)(\*\*)

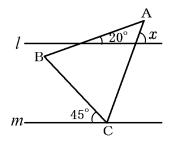

次の $\angle x$ ,  $\angle y$ の大きさを求めよ。ただし,l // mとする。




| 1 x = | y = |  |
|-------|-----|--|
|-------|-----|--|

#### [問題 21](3 学期)(\*\*)

次の $\angle x$ の大きさを求めよ。ただし、l // mとする。





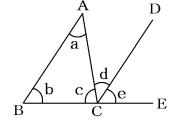

#### [解答欄]

|     | $\bigcirc x =$ |  |  |
|-----|----------------|--|--|
| - 1 |                |  |  |

# [問題 22](入試問題)(\*\*\*)



- 【】三角形の角
- 【】三角形の内角

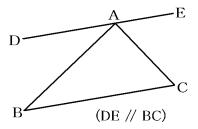

[三角形の内角の和=180°の証明]

#### [問題 23](前期期末)(\*\*)

 $\triangle$ ABC の内角の和が  $180^\circ$  であることを次のように説明した。P, A, D, A に入る角や言葉を答えよ。ただし,A B B D で,点 E は辺 B E の延長上の点とする。

# [説明]

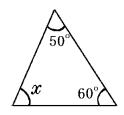
 $\angle a + \angle b + \angle c = (\angle ) + (\pm ) + \angle c = 180^{\circ}$ 




#### [解答欄]

| 7 | 1 | ウ |
|---|---|---|
| 工 |   |   |

#### [問題 24](2 学期期末)(\*\*\*)


三角形の内角の和が 180°であることを同位角や錯角 の性質を使って、右の図で説明せよ。(必要ならば自分 で図に書き入れた記号を使っても良い。)

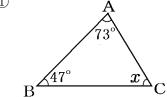


[三角形の内角の和:計算]

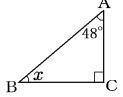
# [問題 25](2 学期中間)(\*)

次の $\angle x$ の大きさを求めよ。

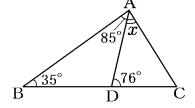



#### [解答欄]

x =


### [問題 26](後期中間)(\*)

次の図において、 $\angle x$ の大きさを求めよ。

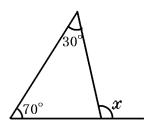

1



2



3

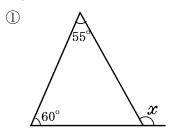


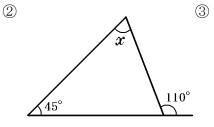

| (1) x = | (2) x = | (3) x = |
|---------|---------|---------|
|---------|---------|---------|

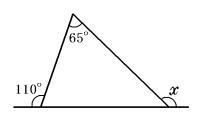
# 【】三角形の外角

#### [問題 27](2 学期期末)(\*)

次の $\angle x$ の大きさを求めよ。





#### [解答欄]


x =

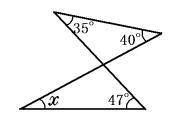
### [問題 28](2 学期期末)(\*)

次の∠xの大きさを求めよ。





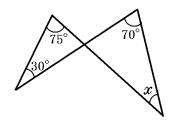



#### [解答欄]

|  |  | $\bigcirc x =$ |  |
|--|--|----------------|--|
|--|--|----------------|--|

#### [2つの三角形と外角]

#### [問題 29](2 学期中間)(\*\*)


次の図で $\angle x$ の大きさを求めよ。

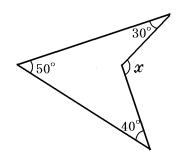


### [解答欄]

# [問題 30](3 学期)(\*\*)

次の図で $\angle x$ の大きさを求めよ。




#### [解答欄]

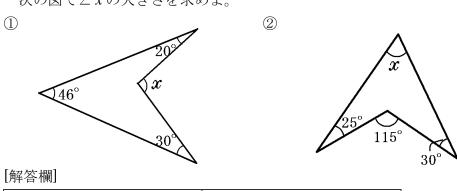
x =

### [外角+補助線]

# [問題 31](2 学期期末)(\*\*\*)

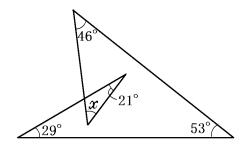
次の図で $\angle x$ の大きさを求めよ。




#### [解答欄]

 $\bigcirc x =$ 

x =

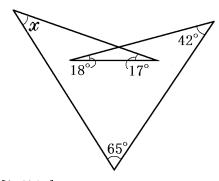

# [問題 32](2 学期期末)(\*\*\*)

次の図で $\angle x$ の大きさを求めよ。



# [問題 33](3 学期)(\*\*\*)

次の図で $\angle x$ の大きさを求めよ。

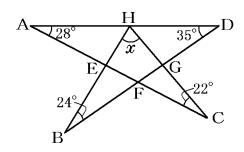



# [解答欄]

x =

# [問題 34](2 学期期末)(\*\*\*)

次の図で $\angle x$ の大きさを求めよ。

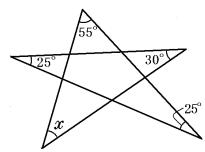



# [解答欄]

[星形の図形など]

[問題 35](2 学期期末)(\*\*\*)

次の図の $\angle x$ の大きさを求めよ。

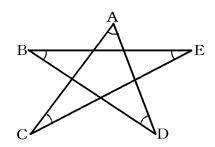



[解答欄]

$$x =$$

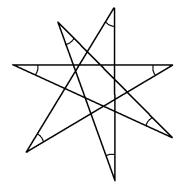
[問題 36](3 学期)(\*\*\*)

次の図の $\angle x$ の大きさを求めよ。




[解答欄]

| x = |  |  |  |
|-----|--|--|--|
|     |  |  |  |


[問題 37](2 学期期末)(\*\*\*\*)

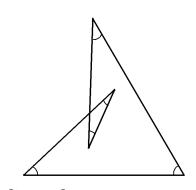
次の図で、 $\angle A + \angle B + \angle C + \angle D + \angle E$ の大きさを求めよ。



[問題 38](2 学期期末)(\*\*\*\*)

下の図で、印のついた角の和を求めよ。

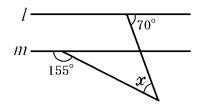



[解答欄]



 $\triangle ADP$ ,  $\triangle BEQ$ ,  $\triangle CFS$  に注目

[問題 39](2 学期期末)(\*\*\*\*)

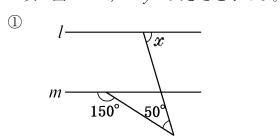

次の図で、印をつけた角の和を求めよ。

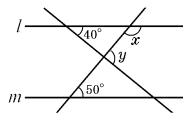


#### [三角形と平行線の角]

# [問題 40](3 学期)(\*\*\*)

次の図の $\angle x$ の大きさを求めよ。ただし、l // mとする。



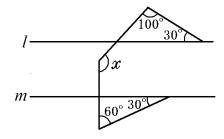


#### [解答欄]

x =

# [問題 41](2 学期期末)(\*\*\*)

次の図の $\angle x$ ,  $\angle y$ の大きさを求めよ。ただし、l // mとする。

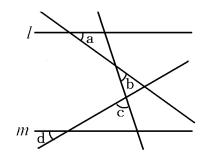





#### [解答欄]

|          |          | —   |  |
|----------|----------|-----|--|
| (1) x =  | (2) x =  | y — |  |
| <u> </u> | <u> </u> |     |  |
|          |          |     |  |

#### [問題 42](3 学期)(\*\*\*)


l || m のとき、 $\angle x$  の大きさを求めよ。



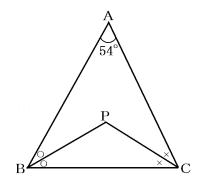
#### [解答欄]

# [問題 43](2 学期中間)(\*\*\*)

次の図で、l / / m のとき、 $\angle a + \angle b + \angle c + \angle d$  の大きさを求めよ。

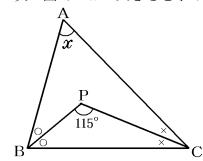


| [解答欄] |  |  |
|-------|--|--|
|       |  |  |


### 【】三角形の内角の二等分

# [問題 44](2 学期期末)(\*\*\*)

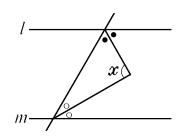
右の図で、 $\triangle ABC$  の $\angle ABC$  の二等分線と $\angle ACB$  の二等分線の交点を P とするとき、 $\angle BPC$  の大き さを求めよ。







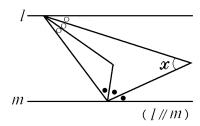

#### [問題 45](2 学期期末)(\*\*\*)


次の図で∠xの大きさを求めよ。



[解答欄]

#### [問題 46](後期中間)(\*\*\*)

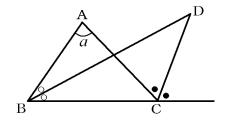

次の図で∠xの大きさを求めよ。



#### [解答欄]

#### [問題 47](2 学期中間)(\*\*\*)

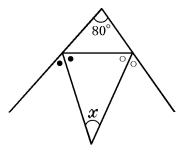
次の図で∠xの大きさを求めよ。




[解答欄]

#### [問題 48](3 学期)(\*\*\*)

 $\triangle ABC$  で、 $\angle B$  の二等分線と頂点 C における 外角の二等分線との交点を D とする。 $\angle A=a^\circ$  のとき、 $\angle BDC$  の大きさを a を用いて表せ。


## [解答欄]



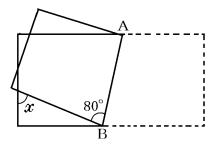


#### [問題 49](2 学期期末)(\*\*\*\*)

次の図で $\angle x$ の大きさを求めよ。



[解答欄]

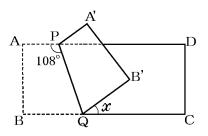

#### 【】折り返し

#### [問題 50](2 学期期末)(\*\*\*)

右の図のように、長方形の紙を線分 AB を 折り目として折り返したとき、 $\angle x$  の大きさ を求めよ。

#### [解答欄]

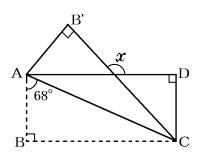
x =




#### [問題 51](2 学期期末)(\*\*\*)

右の図は長方形 ABCD を、PQ を折り目にして折り返した図を表している。このとき、 $\angle x$  の大きさを求めよ。

#### [解答欄]


x =

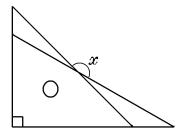


#### [問題 52](2 学期期末)(\*\*\*)

右の図は、長方形 ABCD を、AC を折り目として折り返したようすを表している。このとき、 $\angle x$  の大きさを求めよ。

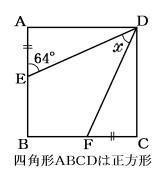
#### [解答欄]




#### 【】三角形の角:その他

#### [問題 53](2 学期期末)(\*\*\*)

右の図のように、1組の三角定規を重ねておくとき、 $\angle x$ の大きさを求めよ。


#### [解答欄]

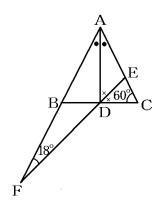
x =



#### [問題 54](3 学期)(\*\*\*)

次の図の $\angle x$ の大きさを求めよ。




#### [解答欄]

x =

#### [問題 55](2 学期期末)(\*\*\*)

右の図で、AD は $\angle BAC$  の二等分線、DE は $\angle ADC$  の二等分線で、AB、ED のそれぞれの延長線の交点を F とする。 $\angle C=60^\circ$ 、 $\angle F=18^\circ$ のとき、 $\angle BAC$  の大きさを求めよ。





#### 【】鋭角三角形·鈍角三角形·直角三角形

#### [問題 56](3 学期)(\*)

次の文章中の①, ②に適語を入れよ。

 $90^{\circ}$  の角を直角といい, $0^{\circ}$  より大きく  $90^{\circ}$  より小さい角を( $(\mathbb{Q})$ )という。また, $90^{\circ}$  より大きく  $180^{\circ}$  より小さい角を( $(\mathbb{Q})$ )という。

#### [解答欄]

| ① | 2 |
|---|---|
|---|---|

#### [問題 57](2 学期中間)(\*)

2 つの内角の大きさが次のような三角形は、鋭角三角形、直角三角形、鈍角三角形のどれか。

(1)  $21^{\circ}$  ,  $48^{\circ}$ 

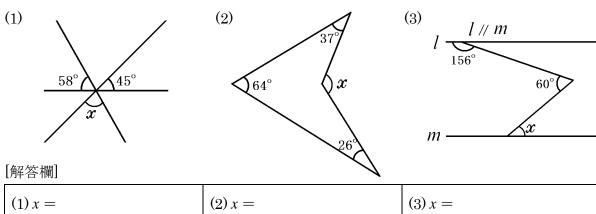
 $(2)~23^{\circ}$  ,  $67^{\circ}$ 

#### [解答欄]

| (1) | (2) |
|-----|-----|
|-----|-----|

#### [問題 58](2 学期期末)(\*)

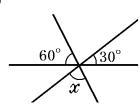
次の△ABCは、鋭角三角形、直角三角形、鈍角三角形のうち、どの三角形か。


- (1)  $\angle A = 25^{\circ}$  ,  $\angle B = 60^{\circ}$
- (2)  $\angle A = 70^{\circ}$  ,  $\angle B = 80^{\circ}$
- (3)  $\angle C = 90^{\circ}$
- (4)  $\angle B = 100^{\circ}$

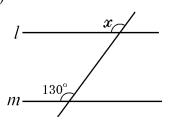
| (1) | (2) | (3) |
|-----|-----|-----|
| (4) |     |     |

# 【】角の総合問題

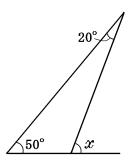
# [問題 59](2 学期中間)


次の∠xの大きさを求めよ。

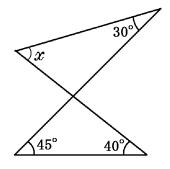



# [問題 60](2 学期中間)

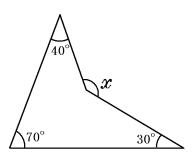
下の図で、 $\angle x$ の大きさを求めよ。ただし、l // mとする。

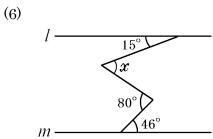

(1)



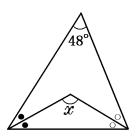

(2)




(3)




(4)

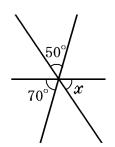



(5)





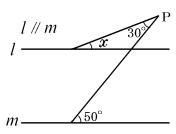
(7)



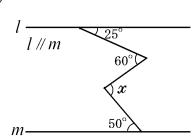

| (1) x = | (2) x = | (3) x = |
|---------|---------|---------|
| (4) x = | (5) x = | (6) x = |
| (7) x = |         |         |

# [問題 61](2 学期期末)

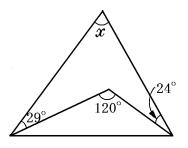
次の図で $\angle x$ の大きさを求めよ。


(1)




(2)



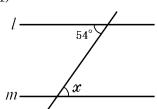

(3)



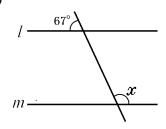
(4)



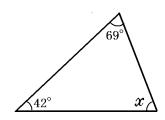
(5)

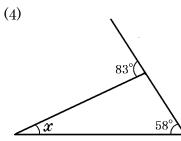



| (1) x = | (2) x = | (3) x = |
|---------|---------|---------|
| (4) x = | (5) x = |         |

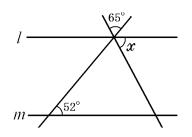

# [問題 62](2 学期期末)

下の図で $\angle x$ ,  $\angle y$ の大きさを求めよ。(l // m とする)

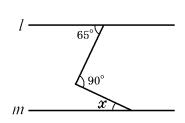

(1)



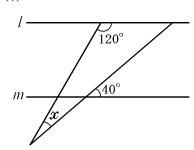

(2)



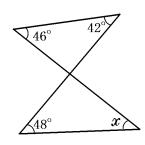

(3)



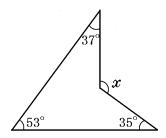




(5)

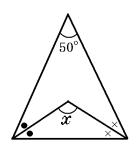



(6)




(7)



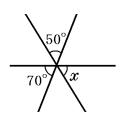

(8)



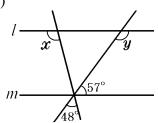
(9)



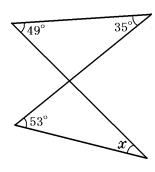
(10)



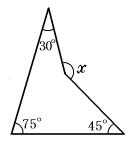

| (1) x =  | (2) x = | (3) x = |
|----------|---------|---------|
| (4) x =  | (5) x = | (6) x = |
| (7) x =  | (8) x = | (9) x = |
| (10) x = |         |         |


# [問題 63](2 学期期末)

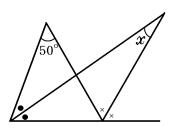
次の図で $\angle x$ ,  $\angle y$ の大きさを求めよ。(l // m とする)


(1)

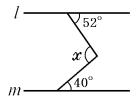



(2)

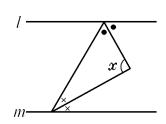



(3)




(4)




(5)

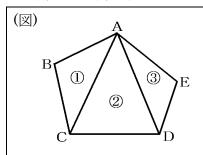


(6)



(7)




| (1) x = | (2) x = | y =     |
|---------|---------|---------|
| (3) x = | (4) x = | (5) x = |
| (6) x = | (7) x = |         |

- 【】多角形の角
- 【】多角形の内角の和・外角の和

#### [多角形の内角の和]

#### [問題 64](2 学期期末)(\*\*)

五角形の内角の和の求め方を、木村さんは次のように発表した。



#### (考え方)

3つの三角形に分けると、五角形の内角の和は、①~③の3つの三角形の内角をすべて加えたものになるから、 $180^\circ~\times 3 = 540^\circ~$ となる。

このとき,

山田君は「 $180^{\circ} \times 5 - 360^{\circ} = 540^{\circ}$ 」という式をたてて発表した。 山田君はどのような求め方をしたか。求め方をまとめよ。

#### [解答欄]

| (考え方) |
|-------|
|       |
|       |
|       |
|       |

#### [問題 65](2 学期期末)(\*\*)

七角形の内角の和を求めよ。

#### [解答欄]

| L/ 4 | _ | 11147 |  |  |  |
|------|---|-------|--|--|--|
|      |   |       |  |  |  |
|      |   |       |  |  |  |
|      |   |       |  |  |  |
|      |   |       |  |  |  |
|      |   |       |  |  |  |

#### [問題 66](2 学期中間)(\*\*)

次の各問いに答えよ。

- (1) 八角形の内角の和は何度か。
- (2) 正十角形の1つの内角の大きさを求めよ。

| (1) | (2) |
|-----|-----|
|-----|-----|

| [問題 67](2 学期中間 | 引)(**)   |       |
|----------------|----------|-------|
| 内角の和が 1800°    | になる多角形は, | 何角形か  |
| [解答欄]          |          |       |
|                |          |       |
|                |          |       |
|                |          |       |
| [問題 68](2 学期期末 | ₹)(**)   |       |
| 次の各問いの(        | )にあてはまる最 | も簡単な数 |

数や言葉を記入せよ。

- (1) 十二角形の内角の和は( )°である。
- (2) 内角の和が900°である多角形は( )である。
- (3) 1 つの内角の大きさが 160° である正多角形は( )である。

#### [解答欄]

| (1) | (2) | (3) |
|-----|-----|-----|
|     |     |     |

#### [多角形の外角の和]

[問題 69](3 学期)(\*\*)

次の各問いに答えよ。

- (1) 多角形の外角の和は何度か。
- (2) 正十角形の1つの外角の大きさを求めよ。

#### [解答欄]

| (1) | (2) |
|-----|-----|
|-----|-----|

#### [問題 70](2 学期期末)(\*\*)

正五角形の1つの外角の大きさを求めよ。

#### [問題 71](3 学期)(\*\*)

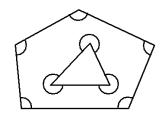
1つの外角の大きさが60°である正多角形は正何角形か。

#### [解答欄]

| ı |  |  |
|---|--|--|

#### [問題 72](2 学期中間)(\*\*)

次の各問いに答えよ。

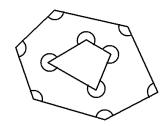

- (1) 1 つの外角が 15° になる正多角形は, 正何角形か。
- (2) 1つの内角の大きさがその外角の大きさの3倍である正多角形の辺の数を求めよ。

#### [解答欄]

| (1) (2) |
|---------|
|---------|

#### [問題 73](後期期末)(\*\*\*)

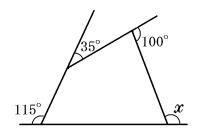
次の図で, 印をつけた角の和を求めよ。




| 胂  | 罕答欄     | 1 |
|----|---------|---|
| ΙЩ | 4 /~ NI | 1 |
|    |         | 1 |

| L, 4 , | <br> |  |  |  |
|--------|------|--|--|--|
|        |      |  |  |  |
|        |      |  |  |  |
|        |      |  |  |  |
|        |      |  |  |  |
|        |      |  |  |  |

#### [問題 74](後期期末)(\*\*\*)

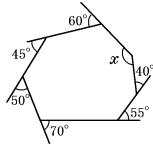

次の図で, 印をつけた角の和を求めよ。



### 【】多角形の角の計算

[1 つの角を求める] [問題 75](2 学期期末)(\*\*)

次の図の $\angle x$ を求めよ。

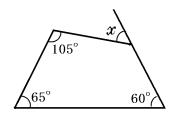



### [解答欄]

x =

# [問題 76](3 学期)(\*\*)

次の図の $\angle x$ を求めよ。

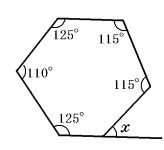



### [解答欄]

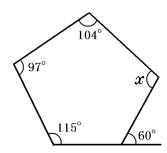
x =

# [問題 77](2 学期期末)(\*\*)

次の図の $\angle x$ を求めよ。




# [解答欄]


#### [問題 78](2 学期期末)(\*\*)

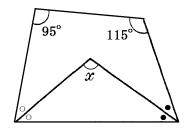
次の図の $\angle x$ を求めよ。

1



2



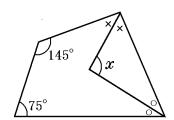

#### [解答欄]

| 1 | r | _ |
|---|---|---|
|   | л |   |

# [角の二等分]

# [問題 79](2 学期中間)(\*\*\*)

次の図の $\angle x$ を求めよ。

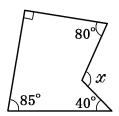



[解答欄]

x =

# [問題 80](2 学期期末)(\*\*\*)

次の図の $\angle x$ を求めよ。

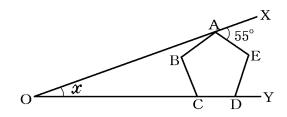



# [解答欄]

#### [1つの角を求める]

#### [問題 81](3 学期)(\*\*\*)

次の図の∠xの大きさを求めよ。

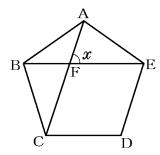



#### [解答欄]

x =

#### [問題 82](2 学期期末)(\*\*\*)

次の図のように、正五角形 ABCDE の頂点 A が線分 OX 上にあり、頂点 C、D が線分 OY 上にある。 $\angle XAE=55^\circ$  のとき、 $\angle x$  の大きさを求めよ。

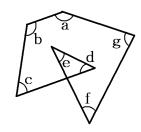



#### [解答欄]

x =

#### [問題 83](後期中間)(\*\*\*)

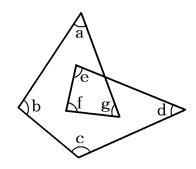
次の正五角形 ABCDE で $\angle x$ の大きさを求めよ。




#### [解答欄]

# [角の和を求める]

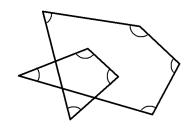
# [問題 84](2 学期期末)(\*\*\*\*)


次の図で、 $\angle a \sim \angle g$ の7つの角の和を求めよ。



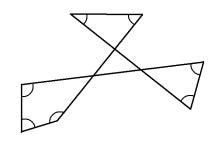
# [解答欄]

#### [問題 85](2 学期期末)(\*\*\*\*)


次の図で、 $\angle a + \angle b + \angle c + \angle d + \angle e + \angle f + \angle g$ の大きさを求めよ。



# [解答欄]

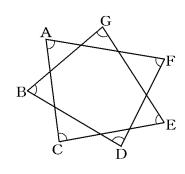

# [問題 86](3 学期)(\*\*\*\*)

次の図で、印をつけた8つの角の和を求めよ。



[問題 87](2 学期期末)(\*\*\*\*)

次の図で、印のついた角の和を求めよ。




[解答欄]



[問題 88](前期中間)(\*\*\*\*)

次の図で、 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F + \angle G$ の大きさを求めよ。

